LITHUANIAN VETERINARY ACADEMY
VETERINARY INSTITUTE

Virginija Bandzaitė

VARIATION OF BLOOD SERUM VITAMIN D,
CALCITONIN, PARATHYROID HORMONE LEVELS IN
COWS AND THEIR IMPORTANCE FOR PROCESSES OF
MINERAL METABOLISM

Summary of doctoral dissertation
Biomedical sciences, veterinary medicine (12B)

Kaišiadorys, 2005

The work has been carried out at Lithuanian Veterinary Academy Veterinary Institute in 2002–2005.
The dissertation is written in Lithuanian.
The dissertation is defended at the science council of Veterinary medicine.

Research supervisor –
Prof. Habil. dr. Vytautas Špakauskas (Lithuanian Veterinary Academy Veterinary Institute, biomedical sciences, veterinary medicine – 12B).

Chairman of Veterinary medicine science council –
Prof. Habil. dr. Algimantas Matusevičius (Lithuanian Veterinary Academy, biomedical sciences, veterinary medicine – 12B).

Members:
Prof. Habil. dr. Justinas Dobilas (Lithuanian Veterinary Academy Veterinary Institute, biomedical sciences, veterinary medicine – 12B);
Prof. Habil. dr. Henrikas Stankevičius (Food Institute of Kaunas University of Technology, biomedical sciences, zootechny – 13B);
Assoc. prof. Jurgis Sutkevičius (Lithuanian Veterinary Academy, biomedical sciences, veterinary medicine – 12B);
Dr. Iona Aleksėjūnienė (Lithuanian Veterinary Academy Veterinary Institute, biomedical sciences, veterinary medicine – 12B).

Opponents:
Prof. Habil. dr. Antanas Stankevičius (Kaunas University of Medicine Institute of Cardiology, science of physics, chemistry – 03P);
Assoc. prof. dr. Algimantas Černauskas (Lithuanian Veterinary Academy, biomedical sciences, veterinary medicine – 12B).

Public defence of doctoral thesis in veterinary medicine science council will take place at the Lithuanian Veterinary Academy Veterinary Institute at 12 o’clock on 22nd December of 2005.
Address: Instituto g. 2, LT-56115, Kaišiadorys, Lithuania.

The abstract of doctoral dissertation has been sent on 22nd of November 2005 according to the confirmed adress list.
The dissertation is available at the libraries of the Lithuanian Veterinary Academy and LVA Veterinary Institute.
LIETUVOS VETERINARIJOS AKADEMIJOS VETERINARIJOS INSTITUTAS

Virginija Bandzaitė

VITAMINO D, KALCITONINO IR PARATHORMONO KIEKIŲ KAITA KARVIŲ Krauko SERUME BEI REIKŠMĖ MINERALINIŲ MEDŽIAGŲ APYKAITOS PROCESAMS

Daktaro disertacijos santrauka
Biomedicinos mokslai, veterinarinė medicina (12B)

Kaišiadorys, 2005

Disertacija parašyta lietuvių kalba.

Mokslinis vadovas –
Prof. habil. dr. Vytautas Špakauskas (Lietuvos veterinarijos akademijos Veterinarijos institutas, biomedicinos mokslai, veterinarinė medicina, 12B).

Disertacija ginama Veterinarijos medicinos mokslo krypties taryboje.

Veterinarinės medicinos krypties disertacijos gynimo taryba:

Pirmininkas –
Prof. habil. dr. Algimantas Matusevičius (Lietuvos veterinarijos akademija, biomedicinos mokslai, veterinarinė medicina – 12B).

Nariai:
prof. habil. dr. Justinas Dobilas (Lietuvos veterinarijos akademijos Veterinarijos institutas, biomedicinos mokslai, veterinarinė medicina – 12B);
prof. habil. dr. Henrikas Stankevičius (Kauno technologijos universiteto Maisto institutas, biomedicinos mokslai – 12B);
doc. dr. Jurgis Sutkevičius (Lietuvos veterinarijos akademija, biomedicinos mokslai, veterinarinė medicina – 12B);
dr. Ilona Aleksijūnienė (Lietuvos veterinarijos akademijos Veterinarijos institutas, biomedicinos mokslai, veterinarinė medicina – 12B).

Oponentai:
prof. habil. dr. Antanas Stankevičius (Kauno medicinos universiteto Kardiologijos institutas, fiziniai mokslai, chemija – 03P);
doc. dr. Algimantas Černauskas (Lietuvos veterinarijos akademija, biomedicinos mokslai, veterinarinė medicina – 12B).

Disertacija bus ginama viešame Veterinarinės medicinos mokslo krypties tarybos posėdyje 2005 m. gruodžio 22 d. 12 val. Lietuvos veterinarijos akademijos Veterinarijos institute.
Adresas: Instituto 2, LT-56115, Kaišiadorys, Lietuva.

Disertacijos santrauka išsiuntinta 2005 m. lapkričio 22 d. pagal patvirtintą adresų sąrašą.
Disertaciją galima peržiūrėti Lietuvos veterinarijos akademijos ir LVA Veterinarijos instituto bibliotekose.
INTRODUCTION

The direct role of vitamin D and parathyroid hormone (PTH), hormone of parathyroid gland, and that of calcitonin (CT), hormone of thyroid gland, includes the regulation of the blood level of calcium (Capen, Martin, 1982; Enemark et al., 2003). Ionised calcium of the blood serum maintains normal functions of nerves and muscles. Calcium is indispensable for normal activity of the heart, besides it is one of the main ions, which regulate the acid-alkali balance. Calcium diminishes permeability of membranes and binding features of tissue colloids, activates such enzymes as ATP-ase, lecithinase, succinatehydrogenase, it stabilises trypsin in the pancreas and inhibits enolase and dipeptidase. When the body experience a lack of calcium, the amounts of proteins, ATP, erythrocytes and haemoglobin become reduced and membrane permeability for ions increases (Urazaev, 1990). In addition, calcium, together with phosphorus and magnesium, forms mineral basis for skeleton. The blood level of ionised calcium is very stable. Main regulatory roles of calcium metabolism belong to vitamin D, parathyroid hormone and calcitonin. Vitamin D stimulates absorption of calcium and phosphorus from guts and creates opportunity for appropriate bone mineralization by maintaining uniform level of electrolytes in guts at the same time (Omdall, DeLuca, 1973, Horst et al., 2003). Vitamin D guarantees bone mineralization by securing sufficient level of mineral ions, meanwhile parathyroid hormone maintains a necessary calcium-phosphorus ratio in intercellular fluids. Besides, small levels of vitamin D are necessary for stimulation of parathyroid hormone to mobilize calcium from skeletal reserves to intercellular fluids (“facultative effect”) (Haussler, McCain, 1977). The most important roles of parathyroid hormone are the following: to increase blood concentration of calcium and to diminish that of phosphorus, to stimulate excretion of phosphorus with urine, to increase reabsorption of calcium in canaliculi when the urine level of calcium is decreased, to increase osteolysis and the number of osteoclasts on the surface of bones, to stimulate excretion of hydroxiprolin with urine, to activate adenilate cyclase in certain cells (Rasmussen, 1974). Calcitonin stimulates accumulation of calcium in bones by inducing the osteoblast activity. In addition, it acts on phosphorus metabolism in the body. Because it decreases the blood level of calcium, calcitonin is antagonist of parathyroid hormone, which increases the level of this element in the blood.

Today’s farming conditions require from animal owners to implement intensive rearing technologies, because it is necessary to avoid economic losses related with metabolic disorders of various character. At present, insufficient attention is paid to animal non-infectious diseases in Lithuania, though metabolic diseases take one of the first places in the pathology of internal diseases by their spread and economic losses. In conditions of insufficient means, not all cattle receive vitamins and also they do not receive mineral supplements everywhere and always. Biochemical tests of animal blood are not carried-out constantly and all-round, a computerized system for health evaluation of every animal, such as systems in the countries of developed animal husbandry, does not exist. It is difficult to define metabolic status of cows of agricultural companies and farmers, because biochemical control of cows-in-calf is not carried out and metabolic processes are not investigated 15 to 20 days before calving. It is not clear what is the situation in specific districts and during specific seasons of the year. In this study, it was therefore planned to investigate metabolic status of vitamin D, calcitonin, parathyroid hormone and macroelements – calcium, phosphorus and magnesium in herds of cows of our Republic.

Aim of the study:
To determine variation particularities of the blood serum level of vitamin D, calcitonin and parathyroid hormone in healthy cows of different feeding, age and productivity and during different seasons of the year and similar levels in cows having parturient paresis, osteomalacia and mastitis.

Pursuing the general aim of the study, the following goals were posed:
1. To investigate variation particularities of the blood serum levels of vitamin D, calcitonin, parathyroid hormone in cows of different age, productivity, physiological status, feeding type during different seasons and their relation with levels of calcium, phosphorus and magnesium.
2. To determine change particularities of the levels of vitamin D, calcitonin and parathyroid hormone and their relation with levels of calcium, phosphorus and magnesium in cows with parturient paresis, osteomalacia and mastitis.
3. To investigate effects of vitamin D preparations on mineral and hormone metabolism in healthy cows-in-calf.
4. To test suitability of methods developed for humans (electrochemiluminescence analysis, chemiluminescence immunometric analysis and immunoferment analysis) for measurement of the blood serum levels of PTH, CT and 25-OH vitamin D in cattle.

Novelty of the scientific study:
Change particularities of the blood serum levels of vitamin D, calcitonin and parathyroid hormone were analysed in healthy cows of different feeding, age and productivity and in sick cows with metabolic diseases. It was investigated how biochemical indicators vary in cows with metabolic diseases (parturient paresis, osteomalacia and mastitis) and the most informative indicators for diagnostics of these diseases (for levels of calcium, phosphorus and magnesium) were determined. Obtained findings were processed statistically.

The method of electrochemiluminescence analysis used for analysis of the blood serum levels of PTH in humans was applied. Compared with radioimmune method, this method is not expensive and quite fast; in addition, this method is sensitive and reliable, because it permits to detect low levels of PTH in the blood serum (up to 0.127 pmol/l). The method of chemiluminescence immunometric analysis used to find the level of CT in humans was tested. Also the method of immunoferment analysis (ELISA) was tested to measure the blood serum level of 25-OH vitamin D in cattle using human antibodies.
MATERIALS AND METHODS

The study was performed in the Laboratory of Animal Health and Epidemiology, Microbiology and Food Safety Department, Lithuanian Veterinary Academy Veterinary Institute (LVA VI), in 2002–2005; in the Virology Laboratory, LVA VI; in the Biochemistry Laboratory of Kaunas University of Medicine Hospital; and in cow-houses of individual farms of Kaunas, Kaišiadorių and Jurbarkas districts.

The blood for analyses was taken from cows of the Lithuanian Black-and-White breed in winter and in summer time. The groups of cows were formed using the principle of analogues and paying attention to the age, health status, time of parturition, productivity and type of received ration. Experimental cows and heifers were examined clinically before formation of groups. The status of the animal was examined, the pulse rate counted, temperature measured, contractions of the rumen counted, rumination of the animal, diuresis and defecation were observed. The cows, which above mentioned indicators were in the range of normal, were considered healthy. The cattle were divided into the following groups:

1. Clinically healthy heifers in-calf (n = 20) (during in-house period (n = 10) and during pasturable period (n = 10));
2. Clinically healthy cows 2–4 years old (n = 10) (during in-house period and during pasturable period);
3. Clinically healthy cows 5–7 years old (n = 10) (during in-house period and during pasturable period);
4. Clinically healthy cows 8 years old and above (during in-house period and during pasturable period);
5. Clinically healthy cows of high and low productivity fed with mineral supplements and without them (during in-house period) (n = 40);
6. Clinically healthy dry cows during the last decade of pregnancy: (Vit. D₃ used every day 50 mg 5 days before calving (n = 5), Vit. D₃ used thrice, 50 mg each time 5 days before calving (n = 5), Vit. D₃ used once, 50 mg 5 days before calving (n=5), control group, for which the vitamin D₃ was not injected (n = 5));
7. Clinically healthy dry cows-in-calf during in-house period (n =10);
8. Having parturient paresis (n = 20) (fed with mineral supplements (n =10), fed without mineral supplements (n = 10));
9. Having osteomalacia (n = 12);
10. Having mastitis (n = 10).

The blood was collected from cattle of the groups 1, 5, 7, 8, 9 and 10 from jugular vein once. The blood was taken from cows of the groups 2–4 twice (during in-house and pasturable periods). The blood was taken 11 times from cows of the group 6: five times before calving every day, the day of calving and 5 days after calving.

The cows and heifers of the groups 1–4, 6, 7, 9 and 10 were fed with mineral supplements. The cows of the groups 5 and 8 were fed as with mineral supplements and without them as well. During wintering period, cows were fed with hay, straw, combined fodders, silo, root-stocks (concentration of nutrients per 1 kg of ration...
blood serum levels of macroelements Ca, P and Mg and levels of calcium-regulating hormones PTH, CT and 25-OH vitamin D in heifers-in-calf, we determined that average levels of macronutrients Ca, P, Mg during in-house period (2.62±0.37, 1.51±0.22, 1.08±0.13, respectively) and pasturable period (2.85±0.21, 2.01±0.10, 1.21±0.12, respectively) were in the range of normal. We found statistically significantly higher levels of phosphorus (p<0.05) and magnesium (p<0.05) during pasturable period compared with in-house period, however higher calcium levels found during pasturable period did not differ statistically significantly from those found during in-house period (p>0.05). Higher levels of calcium, phosphorus and magnesium during pasturable period were found by Horst (1986), Reinhardt et al. (1988) and Klimienè (2001). During winter period, the level of PTH varied from 3.5 to 5.9 pmol/l (4.37±0.75 pmol/l) and it differed statistically significantly from the groups of cows 2–4 years old (p<0.05), however it did not differ statistically significantly from dry cows-in-calf (p>0.05). Average parathyroid hormone levels correlated with levels of calcium negatively (r = –0.593) and with levels of magnesium not strongly positively (r = 0.439). The level of parathyroid hormone varied from 2.0 to 4.1 pmol/l (2.74±0.71 pmol/l) during summer period and it differed statistically significantly from the level found during in-house period (p<0.05). During summer period, the level of PTH correlated with level of calcium strongly negatively (r = –0.779). This corresponded with the findings of Potts et al. (1995) saying that PTH concentration correlates with calcium concentration inversely and the level of PTH increases with decrease of calcium concentrations and vice versa. When comparing heifers-in-calf with dried-off cows, we noticed that significantly higher levels of blood serum calcium (p<0.05) and magnesium (p<0.05) were found in heifers-in-calf, however the levels of phosphorus and calcitonin did not differed statistically significantly (p>0.05), though found higher. Measured lower levels of vitamin D differed statistically significantly (p<0.05) from these ones of dry cows-in-calf, however the levels of parathyroid hormone did not differ statistically significantly (p>0.05), though found lower. Also Klimienè (2001) reported that levels of calcium and phosphorus diminished with age however our study did not corroborate that the level of magnesium increased in the course of life. The average level of calcitonin was 2.14±0.56 pmol/l in summer and 1.75±0.38 pmol/l in winter and they did not differ statistically significantly (p>0.05). The level of calcitonin found in winter time was highest in all investigated groups of clinically healthy cows during in-house period, however it differed statistically significantly only from the group of cows 8 years old and above (p<0.05) and from the groups of clinically healthy cows of low productivity fed as with mineral supplements, as without them (p<0.05). Levels of calcitonin correlated strongly with level of parathyroid hormone in summer and in winter as well (r = 0.916 and r = 0.689, respectively). Higher calcitonin levels in cows-in-calf were reported by Barlet (1972). In his opinion, the level of calcitonin correlated increases in cows-in-calf and heifers-in-calf for protection of mother’s skeleton from too high losses of calcium and phosphorus. According to the data of Delfos (1997), calcitonin is secreted constantly in presence of normal calcium concentration, however its secretion increases significantly by elevation of blood calcium level. That corresponded to our data, because we found higher level of calcitonin in summer compared with winter period, though there was no significantly higher difference (p>0.05). Cooper (1972) described that it is possible
to determine the elevation of calcitonin secretion when animal eats fodder containing much calcium still before the increase in plasma Ca. That corresponded also with our data, because we found higher level of calcitonin in summer time compared with winter period. Average level of vitamin D was 26.76±6.67 nmol/l during winter period and that was the lowest and statistically significant vitamin D level during in-house period found for all investigated groups of clinically healthy cows (p<0.05). In summer, the average level of vitamin D was 25.4±2.94 nmol/l and it was very close to level observed during winter time (26.76±6.67) (p>0.05); also it was lower than that of the groups of clinically healthy cows in summer time, but it differed statistically significantly from the group of cows 8 years old and above (p<0.05). The determined low level of vitamin D may be associated with age. That corresponded to the data of Scharla (1998) that the level of 25-OH vitamin D increased in the course of life.

Table 1. Blood serum indicators of clinically healthy cows

<table>
<thead>
<tr>
<th>Blood serum indicators</th>
<th>Clinically healthy heifers-in-calf during in-house period</th>
<th>Clinically healthy heifers-in-calf during pasturable period</th>
<th>Clinically healthy cows 2–4 years old during in-house period</th>
<th>Clinically healthy cows 2–4 years old during pasturable period</th>
<th>Clinically healthy cows 5–7 years old during in-house period</th>
<th>Clinically healthy cows 5–7 years old during pasturable period</th>
<th>Clinically healthy cows 8 years old and above during in-house period</th>
<th>Clinically healthy cows 8 years old and above during pasturable period</th>
<th>Clinically healthy dried-off cows-in-calf during in-house period</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTH, pmol/l</td>
<td>M±m 4.37±0.75</td>
<td>M±m 2.74±0.71</td>
<td>M±m 3.46±0.75</td>
<td>M±m 2.62±0.58</td>
<td>M±m 4.42±0.57</td>
<td>M±m 3.58±0.67</td>
<td>M±m 4.37±0.82</td>
<td>M±m 3.64±0.59</td>
<td>M±m 5.2±1.26</td>
</tr>
<tr>
<td>CT, pmol/l</td>
<td>1.75±0.38</td>
<td>2.14±0.56</td>
<td>1.71±0.34</td>
<td>2.03±0.44</td>
<td>1.54±1.14</td>
<td>2.1±0.54</td>
<td>1.46±0.00</td>
<td>1.51±0.09</td>
<td>1.61±0.20</td>
</tr>
<tr>
<td>Ca, mmol/l</td>
<td>2.62±0.37</td>
<td>2.85±0.21</td>
<td>2.28±0.28</td>
<td>2.82±0.42</td>
<td>1.97±0.24</td>
<td>2.62±0.20</td>
<td>1.88±0.27</td>
<td>2.51±0.04</td>
<td>2.32±0.18</td>
</tr>
<tr>
<td>P, mmol/l</td>
<td>1.51±0.22</td>
<td>2.01±0.10</td>
<td>1.88±0.17</td>
<td>1.89±0.18</td>
<td>1.46±0.25</td>
<td>1.82±0.18</td>
<td>1.52±0.12</td>
<td>1.73±0.19</td>
<td>1.47±0.24</td>
</tr>
<tr>
<td>Mg, mmol/l</td>
<td>1.08±0.13</td>
<td>1.21±0.12</td>
<td>0.96±0.19</td>
<td>1.05±0.14</td>
<td>0.98±0.22</td>
<td>0.98±0.12</td>
<td>0.85±0.10</td>
<td>0.81±0.13</td>
<td>0.86±0.16</td>
</tr>
<tr>
<td>Vit. D, nmol/l</td>
<td>26.76±6.67</td>
<td>25.4±2.94</td>
<td>34.55±9.16</td>
<td>28.69±6.28</td>
<td>46.9±4.22</td>
<td>28.45±5.86</td>
<td>37.2±7.78</td>
<td>35.67±5.49</td>
<td>37.8±6.45</td>
</tr>
</tbody>
</table>

Levels of vitamin D correlated with levels of PTH very strongly during winter (r = 0.936) and summer (r = 0.908) periods and they correlated also strongly negatively with levels of calcium during winter (r = −0.651) and summer (r = −0.779). According to Capen and Rosol (1989), low levels of calcium stimulate secretion of parathyroid hormone and the latter induces synthesis of vitamin D. Because the blood calcium levels found for heifers-in-calf in summer and in winter time as well were in the range of normal, the level of vitamin D was not high too.

Mild hypocalcemia was found doing analysis of blood serum macronutrient levels of clinically healthy cows 2–4 years old at the end of the in-house period; the mean of the calcium level was 2.28±0.28 mmol/l. Average levels of phosphorus (1.88±0.17 mmol/l) and magnesium (0.96±0.19 mmol/l) were in the range of normal. PTH varied from 2.2 to 5 pmol/l (it was 3.46±0.75 pmol/l in average). This was the lowest and statistically significant (p<0.05) PTH level among all groups of clinically healthy cows investigated during in-house period, except the cows of high productivity (3.43±0.38, p>0.05) and cows of low productivity fed with mineral supplements (2.5±0.61, p<0.05) and without them (2.9±0.60, p>0.05). Parathyroid hormone correlated strongly negatively with level of calcium (r = –0.770). The measured low PTH level may be associated with age (Potts et al., 1995), because the calcium levels decrease and PTH activity increases in older age. The average calcitonin level was 1.71±0.34 pmol/l and it differed statistically significantly only from the level in the group of cows 8 years old and above during pasturable and during in-house periods (p<0.05) and from the groups of cows of low productivity (p<0.05). Vitamin D correlated with levels of PTH satisfactorily (r = 0.598), with calcium strongly negatively (r = –0.664) and with phosphorus weakly negatively (r = –0.334). Average level of vitamin D was 34.55±9.16 nmol/l and it was higher than level in heifers-in-calf (26.76±6.67 nmol/l, p<0.05); there was no significant difference between the other groups. That may be also associated with age (Scharla, 1998) and blood serum level of calcium (Bruder et al., 2001).

Levels of macronutrients found by investigating cows 2–4 years old during pasturable period corresponded with the physiological norm or were close to it. Average level of calcium was 2.82±0.42 mmol/l. The level of phosphorus was above physiological norm in 5 cows of ten investigated, it was in the range of normal in others (1.89±0.18 mmol/l in average). The level of magnesium varied in limits of normal and was 1.05±0.14 mmol/l in average. The level of calcium was significantly higher (p<0.05) during pasturable period (2.82±0.42 mmol/l) compared with in-house period (2.28±0.28 mmol/l), and the level of calcium almost did not differ (p>0.05) compared with heifers-in-calf during pasturable period (2.85±0.21 mmol/l). The levels of phosphorus almost did not differ during in-house and pasturable periods (1.88±0.17 mmol/l and 1.89±0.18 mmol/l).
The levels of magnesium were also very similar during in-house and pasturable periods (0.96±0.19 mmol/l and 1.05±0.14 mmol/l respectively, p>0.05). The PTH level varied from 1.9 to 3.9 pmol/l and was 2.62±0.58 pmol/l in average. That was the lowest PTH level among all groups of cows investigated during the summer period, however it differed statistically significantly only from the group of cows 8 years old and above (p<0.05). There was no significant difference between PTH levels found in winter and summer (p>0.05). PTH correlated with levels of CT (r = 0.770) and levels of vitamin D (r = 0.774) strongly and with levels of calcium strongly negatively (r = – 0.656). The average level of calcitonin was 2.03 ±0.44 pmol/l and it did not differ statistically significantly from the level observed during winter period (p>0.05) and from the other groups of cows investigated during summer period except the group of cows 8 years old and above (p<0.05). The level of vitamin D varied from 19.6 to 39.5 mmol/l (28.69±6.28 mmol/l) and did not differ statistically significantly from the level found during winter period (p>0.05) and from the other groups investigated during summer period except the group of cows aged 8 years and above (p<0.05). Vitamin D correlated with levels of calcium strongly negatively (r = – 0.661) and with levels of phosphorus weakly negatively (r = – 0.355).

Hypocalcemia was revealed by performing blood serum tests of cows 5–7 years old during in-house period (average level of Ca was 1.97±0.24 mmol/l), the level of calcium differed statistically significantly from the level of calcium of heifers-in-calf (p<0.05) and cows 2–4 years old (p<0.05), but it did not differ statistically significantly from the group of cows 8 years old and above (p>0.05). The average level of phosphorus (1.46±0.25 mmol/l) was in the range of the recommended norm. The level of phosphorus found during in-house period differed statistically significantly only from the group of cows 2–4 years old (1.89±0.18, p<0.05). The mean of the magnesium level was 0.98±0.22 mmol/l. The level of magnesium did not differ statistically significantly among investigated groups of clinically healthy cows neither during winter (p>0.05) nor during summer (p>0.05) periods. The average PTH level was 4.42±0.57 pmol/l. During in-house period, a higher statistically significantly PTH level among clinically healthy cows was found only for high productivity cows, which did not receive mineral supplements (5.85±0.97, p<0.05). PTH correlated with levels of calcitonin strongly (r = 0.703) and vitamin D (r = 0.89) and also with levels of calcium satisfactorily negatively (r = – 0.585). The average level of calcitonin was 1.54±1.14 pmol/l, no statistically significant difference was between the other groups of cows investigated during in-house period (p>0.05). The average level of vitamin D was 46.9±4.22 nmol/l and that was the highest statistically significant level of vitamin D found during in-house period in the blood serum of clinically healthy cows (p<0.05), except the group of high productivity cows, which did not receive mineral supplements where the level of vitamin D was also lower, but the difference was not statistically significant (43.3±9.41, p>0.05). The level of vitamin D correlated with the level of calcium strongly inversely (r = – 0.678). The levels of calcium measured during pasturable period by analysing blood serum of the cows 5–7 years old corresponded to the physiological normal and they were statistically significantly higher compared with winter period (2.62±0.20 mmol/l, p<0.05). Statistically significantly higher levels of calcium were found only in the blood of heifers-in-calf (2.85±0.21, p<0.05) when comparing with other groups of cows investigated during summer. Averages of phosphorus (1.82±0.18 mmol/l) and magnesium (0.98±0.12 mmol/l) corresponded to the recommended physiological norm. The level of phosphorus was significantly higher (p<0.05) compared with winter period; and significantly higher amount was only in the blood of heifers-in-calf (2.01±0.10, p<0.05) when comparing with other groups of clinically healthy cows investigated in summer. There was no significant difference between levels of magnesium found in winter (0.98±0.22) and summer (0.98±0.12) (p>0.05); a significantly higher amount was only in the blood of heifers-in-calf (1.21±0.12, p<0.05) and significantly lower in the blood of cows 8 years old and above (0.81±0.13, p<0.05) when compared with other groups of cows investigated in summer. The level of parathyroid hormone varied from 2.71 to 4.8 pmol/l (3.58±0.67 pmol/l in average) and was significantly lower than that found during in-house period (4.42±0.57 pmol/l, p<0.05). It was statistically significantly higher than the level in heifers-in-calf (2.74±0.71, p<0.05) and in cows 2–4 years old (2.62±0.58, p<0.05) when compared with other groups of healthy cows during pasturable period; there was no significant difference (3.64±0.59, p>0.05) when compared with cows 8 years old and above. That may be associated with age (Scharla, 1998) and productivity, because cows 5–7 years old are most productive and large amounts of calcium are secreted into milk (Klimienė, 2001), therefore the synthesis of parathyroid hormone becomes more active (Malz and Meyer, 1993; Axelsson, 1991). PTH levels correlated with levels of CT (r = 0.857) and vitamin D (r = 0.908) strongly and with levels of calcium strongly negatively (r = – 0.690). Average level of calcitonin was 2.1±0.54 pmol/l and it was statistically significantly higher than corresponding level during winter period (1.54±1.14, p<0.05). That corresponds with data of Horst (1986), Reinhardt (1988) and other researchers, saying that cows absorb calcium depending on how much they need it, i.e. when cows eat fodder containing large amounts of calcium, synthesis of calcitonin becomes more active and the blood level of calcium normalises. When compared with other groups of clinically healthy cows investigated in summer, a statistically significant difference was found with the group of cows 8 years old and above (1.51±0.09, p<0.05). Average level of vitamin D was 28.45±5.862 nmol/l and it was statistically significantly lower than corresponding level in winter (46.9±4.22, p<0.05). There was no significant difference among other groups of cows investigated in summer except the group of cows 8 years old and above where the level of vitamin D was statistically significantly higher (35.67±5.49, p<0.05). The level of vitamin D correlated with the level of calcium strongly negatively (r = – 0.678).

Hypocalcemia was revealed at the end of in-house period by analysing biochemical indicators of the blood serum of cows 8 years old and above, which received mineral supplements (the average amount of calcium was 1.88±0.27
measured during winter period (0.85±0.10, p<0.05) and was significantly lower than corresponding level of other groups of cows investigated during summer period (p<0.05). The average level of parathyroid hormone was 3.64±0.59 pmol/l and that was the highest blood serum PTH level in healthy cows found during pasturab le period, however it differed statistically significantly from heifers-in-calf (2.74±0.71, p<0.05) and cows 2–4 years old (2.62±0.58, p<0.05), and did not differ statistically significantly (3.58±0.67, p<0.05) from cows 5–7 years old. The amount of PTH correlated with CT strongly (r = 0.728), with vitamin D satisfactorily (r = 0.415) and with calcium strongly inversely (r = – 0.364). The level of calcium was 1.51±0.09 pmol/l in average, however there was no significant difference when compared with in-house period (1.46±0.00, p<0.05). The average level of vitamin D was 35.67±5.49 and it was statistically significantly higher than this one of other groups of clinically healthy cows investigated in summer (p<0.05), however it did not differ statistically significantly (37.2±7.78, p>0.05) when compared with this one found during winter period. The level of vitamin D correlated strongly with calcium (r = – 0.691) and phosphorus (r = – 0.620).

<table>
<thead>
<tr>
<th>Blood serum indicators</th>
<th>PTH, pmol/l</th>
<th>CT, pmol/l</th>
<th>Ca, mmol/l</th>
<th>P, mmol/l</th>
<th>Mg, mmol/l</th>
<th>Vit. D, nmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically healthy cows of high productivity, which received mineral supplements</td>
<td>3.4±0.38</td>
<td>1.6±0.28</td>
<td>1.98±0.30</td>
<td>1.63±0.26</td>
<td>1.04±0.13</td>
<td>39.5±6.74</td>
</tr>
<tr>
<td>Clinically healthy cows of high productivity, which did not receive mineral supplements</td>
<td>5.8±0.97</td>
<td>1.5±0.14</td>
<td>1.79±0.16</td>
<td>1.47±0.12</td>
<td>0.98±0.15</td>
<td>43.3±9.41</td>
</tr>
<tr>
<td>Clinically healthy cows of low productivity, which received mineral supplements</td>
<td>2.5±0.61</td>
<td>1.48±0.05</td>
<td>2.21±0.28</td>
<td>1.57±0.13</td>
<td>0.99±0.18</td>
<td>37.6±7.90</td>
</tr>
<tr>
<td>Clinically healthy cows of low productivity, which did not receive mineral supplements</td>
<td>2.9±0.60</td>
<td>1.46±0.00</td>
<td>1.94±0.14</td>
<td>1.59±0.15</td>
<td>0.92±0.14</td>
<td>38.1±8.97</td>
</tr>
</tbody>
</table>

Table 2. Blood serum indicators of high and low productivity clinically healthy cows fed with mineral supplements and without them

Hypocalcemia was revealed in all investigated cows during investigation of clinically healthy cows of high and low productivity during in-house period, fed with mineral supplements and without them. The highest hypocalcemia was found in most productive cows, which did not receive mineral supplements (1.79±0.16), the lowest found in cows of lowest productivity, which received mineral supplements (2.21±0.28). The level of calcium was dependent of productivity indicators of cows, because it correlated with amount of milk. That corresponds with findings of Klimienė (2001). The level of phosphorus was similar (in the rage of normal) in the blood serum of all investigated cows. A significant difference was
between high productivity cows fed with mineral supplements (1.63±0.26) and without them (1.47±0.12) (p<0.05). There was no statistically significant difference between other groups (p>0.05). The level of magnesium was in the range of normal in the blood serum of all investigated cows, however the highest amount of magnesium was found in the blood serum of productive cows, which received mineral supplements, but there was no significant difference (p>0.05). That did not correspond with data of Klimienė (2001) saying that a lower level of magnesium was found in cows of high productivity compared with cows of low productivity.

The level of PTH among groups of cows varied from 2.5 to 5.85 pmol/l. The highest PTH amounts were found in most productive cows, which did not receive mineral supplements (5.85±0.97) and the lowest in low productivity cows, which received mineral supplements (2.5±0.61). We found that PTH levels in high productivity cows varied depending on feeding type (Table 2). Significantly higher PTH levels were found in the blood serum of cows, which did not receive mineral supplements (5.85±0.97, p<0.05) compared with those, which received them. Obtained findings correspond with reported data of Malz and Meyer (1993) and Axelsson (1991) that large amounts of calcium are used for production of milk and, when sufficient amount of calcium is not received with fodders, PTH secretion is activated for increase of blood calcium level by mobilizing it from bones. In case of high productivity healthy cows, which received mineral supplements, we found satisfactorily negative PTH correlation with calcium (r = −0.441), strong correlation with vitamin D (r = 0.666) and very strong with CT (r = 0.866); and in case of cows, which did not receive mineral supplements, we found strong PTH correlation with calcium (r = −0.828), satisfactory with vitamin D (r = 0.559) and calcitonin (r = 0.599). When doing analysis of PTH levels in the blood of low productivity cows (Table 2), we found that mineral supplements with fodder did not provide significant (p>0.05) difference in the analysed PTH indicators. That may be explained by the fact that low productivity cows use little amount of calcium for production of milk and, the parathyroid gland functions in conditions of not increased physiological load and PTH activity increases thus very slightly in cows, which do not receive mineral supplements (Barnouin, Chassagne, 1994). We found strong PTH correlation with vitamin D (r = 0.625), satisfactory with calcitonin (r = 0.572) and strong negative with calcium (r = −0.774) in the case of low productivity cows fed with mineral supplements. We determined strong PTH correlation with vitamin D (r = 0.677) and satisfactory negative with calcium (r = −0.539) in the case of low productivity cows fed without mineral supplements. The level of calcitonin between the groups of cows varied from 1.46 to 1.6 pmol/l and did not differ statistically significantly (p>0.05). The average level of vitamin D between all four groups of cows varied from 37.6 to 43.3 nmol/l, however it did not differ statistically significantly (p>0.05). The highest amount of vitamin D was found in most productive cows, which did not receive mineral supplements (43.3±9.41), the lowest was found in low productivity cows, which received mineral supplements (37.6±7.90). In the case of productive cows, which did not receive mineral supplements, not only the highest level of vitamin D was found

(43.3±9.41), but also that of PTH (5.85±0.97), and the lowest calcium level too (1.79±0.16 mmol/l). That corresponds with data of Bruder (2001) and other researchers that activity of vitamin D depends on blood calcium level, i.e. the lower is the amount of Ca, the higher is PTH level, which activates synthesis of vitamin D.

We found important changes of macronutrients and hormones by analyzing levels of macronutrients and calcitropic hormones in dry cows-in-calf, which were injected vitamin D (Romedat D₃ forte 1 ml (1 ml – 50 mg vit. D₃), Atarost, Germany) one week before calving. When performing analysis of the blood serum of cows at once after parturition, an important fall in concentrations of calcium and phosphorus and also an increase in concentrations of magnesium, PTH, CT and 25-OH vitamin D were observed. Measured values of macronutrients and hormones changed at similar intervals, independently of vitamin D injections. However after several days after calving the recorded levels of macronutrients and hormones differed (Figures 1–6).

![Figure 1. Change of Calcium concentrations in the blood serum of cows](image-url)
The decrease of blood calcium level before, during and after calving was reported also by other authors (Axelsson, 1991, Malz and Meyer, 1993, Goff and Horst, 1997). Also Riond et al. (1995) described that the levels of calcium and phosphorus decreased and the levels of magnesium increased after parturition.

Magnesium and calcium compete for fixation site in the cell. They are antagonists because ions of magnesium inhibit the passage of calcium ions into the cell. Depending on magnesium concentration, ions of magnesium replace ions of calcium on its membrane receptors and in the binding sites of enzymes (Niemack, 1985). Other authors (Schonewille, Klooster, 1994) found decreased blood level of calcium, phosphorus and magnesium only after parturition. According to Arney (1994), the decrease in calcium is determined by elevated loss of calcium with colostrum at the onset of lactation and insufficient resorption from the gastrointestinal tract together with decrease of PTH synthesis and lack of active forms of vitamin D. When investigating effects of vitamin D on the levels of calcium and phosphorus, Zepperitz et al. (1994) found that vitamin D acts increasing the blood level of calcium and phosphorus in cows and reduce the number of cases of parturient paresis after calving. Besides, he indicates that different forms of this vitamin decrease the blood serum level of magnesium. According to reports of Beaudeau et al. (1994), Breves et al. (1995) the blood
serum levels of calcium and phosphorus in cows increase 36 h and 24 h after calving when vitamin D is administered. According to the data of our study, the levels of calcium and phosphorus decreased slightly 5 days before calving and increased importantly 24 h after parturition and also increased little by little later depending on how often vitamin D was injected. According to Samanc et al. (1995), the level of hypocalcemia is diminished by single doses of vitamin D administered 3–10 days before parturition. According to our findings, single doses of vitamin D did not have greater impact on the level of calcium because there was no significant difference between levels of calcium compared with control cows and the level of calcium did not restored 5 days after calving up to the level, which was 5 days before parturition.

We found increased level of calcitonin on the day of parturition, though the level of calcium was rather reduced. That contradicts the findings of Deftos (1997) that calcitonin is secreted constantly in conditions of normal concentration of calcium, however its secretion increases importantly by increase of the blood level of calcium. According to Barlet (1972) the level of calcitonin increases for protection of mother’s skeleton from excessive loss of calcium and phosphorus.

The blood serum PTH levels were statistically significantly increased in all groups of cows (p<0.05) on the day of parturition and one day after parturition compared with measured PTH level 5 days before parturition. The blood serum PTH levels in groups 1, 2 and 3 did not differ statistically significantly on the fifth day after parturition from the levels found 5 days before parturition (p>0.05), and they were statistically significantly higher in the blood serum of the group 4 (p<0.05).

![Figure 5. Change of blood serum concentration of PTH](image)

![Figure 6. Change of blood serum 25-OH vitamin D in cows](image)
phosphorus determined in the groups 1 and 2 the fifth day after parturition were close to those found 5 days before parturition; and concentrations of calcium and phosphorus did not differ statistically significantly from the control group in the case of cows whom vitamin D was injected only once. Based on our study it is possible to conclude that injecting of vitamin D has a big influence on blood serum levels of calcium and phosphorus and does not have greater impact on the level of magnesium. Vitamin D had impact on levels of PTH and CT as well because higher levels of PTH and CT were found in the control group whom vitamin D was not injected.

Hypocalcemia was found analysing blood levels of PTH, CT, vitamin D and macroelements Ca, P, Mg in clinically healthy cows-in-calf (Table 1), (2.32±0.18); and the levels of phosphorus (1.47±0.24) and magnesium (0.86±0.16) were in the range of normal. The level of calcium was statistically significantly lower than corresponding level in heifers-in-calf (2.62±0.37, p<0.05) and significantly higher than the level in cows 5-7 years old (1.97±0.24, p<0.05) and 8 years and above (1.88±0.27, p<0.05); and it did not differ statistically significantly (2.28±0.28, p>0.05) from cows 2-4 years old. Among the groups of clinically healthy cows, the level of phosphorus differed statistically significantly only from cows 2-4 years old (1.88±0.17, p<0.05). The blood level of magnesium was statistically significantly higher only in heifers-in-calf (1.08±0.13, p<0.05), it did not differ statistically significantly (p>0.05) from other groups of clinically healthy cows. PTH varied from 3.5 to 7.9 pmol/l and was 5.2±1.26 pmol/l in average. This was the highest PTH level found in the groups of clinically healthy cows, however it did not differ statistically significantly from heifers-in-calf (4.37±0.75, p>0.05); it was statistically significantly lower (p<0.05) in the blood serum of other groups of clinically healthy cows. It is supposed that requirement of calcium increase during growth of fetus and PTH activity increases also, therefore a higher amount of it is found (Malz, Mayer, 1993). When comparing dry cows-in-calf with heifers-in-calf, a lower blood PTH level was found in the latter (4.37±0.75 pmol/l), though there was no significant difference (p>0.05). Because cows aged 4–10 years were selected for the group of dry cows-in-calf, our data corresponded with statement of Rajala and Grohn (1998), that the levels of calcium decrease and PTH activity increases with age. The PTH level correlated with level of calcium strongly negatively (r = –0.726) and with level of vitamin D very strongly (r = –0.917). The level of calcitonin was 1.61±0.20 pmol/l in average and it did not differ statistically from other groups of clinically healthy cows except the group of cows 8 years old and above where it was statistically significantly lower (1.46±0.00, p<0.05). The level of vitamin D was similar to the level of other groups of clinically healthy cows, it was lower only in the case of heifers-in-calf, however no statistically significant difference was observed (p>0.05). Analogic findings were obtained also by S. H. Sharla in 1998. According to the statement of this researcher, findings of the study may be associated with age, because also the amount of 25-OH vitamin D increases in the course of life. Bruder and other researchers state that the activity of vitamin D depends on the blood level of calcium (2001). According to our study this statement was supported, because levels of calcium and vitamin D found in the blood of dry cows-in-calf correlated importantly negatively one with another (r = –0.780).

Found low values of macronutrients in the groups of cows with parturient paresis show that their blood serum levels depended on feeding type, but macroelements received with mineral supplement were not sufficient to maintain blood homeostasis in cows during critic time after parturition when large quantities of macroelements were excreted from blood to milk. Studies found that mineral supplements act on the status of mineral metabolism and have impact on levels of blood components (Baudet et al., 1996). However, it is not reported how they change the blood composition of cows with parturient paresis. According to Anot Horst et al. (1994), in the case of cows having parturient paresis, high levels of parathyroid hormone are found, as a rule. The literature indicates that the serum PTH level correlates with concentration of calcium most often inversely and, in presence of hyperthyroidism, the serum amount of calcium increases and this one of inorganic phosphorus decreases at the same time (Potts et al., 1995). According to our study, an important correlative dependence between PTH level and measured levels of calcium, phosphorus and magnesium was determined (correlation coefficient r varied respectively: – 0.023; 0.359; – 0.365). Low levels of calcium and phosphorus found during the study show incapacity of parathyroid gland to maintain homeostasis. These findings correspond to reports of other researchers that parathryoid gland in cows with parturient paresis, is incapable to maintain necessary levels of calcium and phosphorus though it secretes more PTH into the blood (Houe et al., 1999). Obtained findings correspond to reports of other researchers that low level of calcium stimulates secretion in parathyroid gland (Goff, Horst, 1997; Thilsing-Hansen et al., 2002). This is confirmed also by investigations of cows with parturient paresis, which did not receive mineral supplements. The blood PTH amount in these cows was higher (p<0.05) than that of cows having paresis, which received mineral supplement. Blood calcitonin levels in cows were decreasing with decreasing values of blood serum calcium. Also other researchers (Ciaramella et al., 2000) found low level of calcitonin when analysing parameters of animal metabolism in the blood of buffalos. The blood level of vitamin D found in cows with paresis, which received mineral supplement, was 43.09±8.16 nmol/l, and that of cows, which did not receive mineral supplements, was 45.84±10.76 nmol/l. There was no statistically significant difference between these groups (p>0.05). However a significantly higher number was in the case of osteomalacia and mastitis (p<0.05) when comparing with other groups of cows during winter period, also it was significantly higher in cows-in-calf and heifers-in-calf and cows aged 2–4 years (p<0.05), however there was no significant difference (p>0.05) when compared with cows 5–7 years old and above. A higher blood level of vitamin D in the blood of sick cows may be explained by the fact that activity of vitamin D depends on the abundance of calcium in the blood, i.e. the lower is the level of Ca, the higher is the level of PTH, which activates synthesis of vitamin D (Bruder et al., 2001).
were in the range of normal. Comparing the level of PTH in the blood of cows with osteomalacia, mastitis and paresis, the blood level of PTH in cows having osteomalacia and mastitis did not differ statistically significantly (p>0.05); it was increased importantly only in cows with parturient paresis (p<0.05). The level of calcitonin in cows with mastitis was very close to the level of calcitonin found in healthy cows (p>0.05). According to the data in literature, the level of calcitonin depends directly on the blood serum level of calcium (Deftos, Gagel, 2000; Austin, Heath, 1981). Because the blood serum level of calcium found in cows with mastitis was close to the lower limit of physiological norm, the level of calcitonin also was not high and it was close to the level of calcitonin found in healthy cows. The level of vitamin D, found in the blood serum of cows with mastitis, correlated inversely with level of calcium (r = – 0.752) and phosphorus (r = – 0.901). It is possible to see from the correlative relations found by us how long-lasting hypocalcemia influenced synthesis of vitamin D for intensification of resorption of calcium and phosphorus from the intestinal tract. The level of PTH in cows with mastitis and osteomalacia was very similar (3.97±0.50 and 3.95±0.60 pmol/l respectively, p>0.05), however the level of vitamin D differed (23.72±7.19 and 33.97±11.39 nmol/l respectively, p<0.05). The blood level of phosphorus in cows with mastitis corresponded to the physiological norm and the level of calcium was in the range of normal. Comparing the level of PTH in the blood of cows with osteomalacia, mastitis and paresis, the blood level of PTH in cows having osteomalacia and mastitis did not differ statistically significantly (p>0.05); it was increased importantly only in cows with parturient paresis (p<0.05). The level of calcitonin in cows with mastitis was very close to the level of calcitonin found in healthy cows (p>0.05). According to the data in literature, the level of calcitonin depends directly on the blood serum level of calcium (Deftos, Gagel, 2000; Austin, Heath, 1981). Because the blood serum level of calcium found in cows with mastitis was close to the lower limit of physiological norm, the level of calcitonin also was not high and it was close to the level of calcitonin found in healthy cows. The level of vitamin D, found in the blood serum of cows with mastitis, correlated inversely with level of calcium (r = – 0.752) and phosphorus (r = – 0.901). It is possible to see from the correlative relations found by us how long-lasting hypocalcemia influenced synthesis of vitamin D for intensification of resorption of calcium and phosphorus from the intestinal tract. The level of PTH in cows with mastitis and osteomalacia was very similar (3.97±0.50 and 3.95±0.60 pmol/l respectively, p<0.05), however the level of vitamin D differed (23.72±7.19 and 33.97±11.39 nmol/l respectively, p<0.05). The blood level of phosphorus in cows with mastitis corresponded to the physiological norm and the level of calcium varied without exceeding the lower physiological norm. The results of our study corresponded with findings of Haussler and other researchers (1998), which showed that the level of vitamin D depended on blood concentrations of calcium and phosphorus, however compared with PTH, this interaction was rather weaker. The PTH levels correlated with levels of calcium weakly inversely (r = – 0.303).

CONCLUSIONS:

1. The blood serum level of PTH in healthy cows varied from 1.8 to 7.9 pmol/l, this one of CT – from 1.46 to 2.9 pmol/l, vit. D – from 18.1 to 56.4 nmol/l. The levels of PTH correlated with levels of calcium inversely and with levels of vitamin D and calcitonin positively; and the levels of vitamin D correlated with levels of calcium negatively.

2. The blood serum levels of PTH, CT and vitamin D in healthy cows changed depending on age: the blood serum level of PTH and vitamin D were statistically significantly lower and the levels of CT were higher in cows 2-4 years old compared with cows 8 years old and above.

3. The blood serum levels of PTH and CT in healthy cows changed depending on the physiological status: the measured levels of PTH and CT were statistically significantly higher in cows-in-calf and heifers-in-calf compared with cows of lactation period.

4. The blood serum levels of PTH and vitamin D in healthy cows depending on the season of the year – statistically significantly higher levels of PTH and vitamin D and lower levels of CT were found during winter period compared with summer period.

5. The highest levels of PTH were found in the blood serum of the most...
productive cows fed without mineral supplements (5.85 ± 0.97 pmol/l), the lowest – in the blood serum of low productivity cows fed with mineral supplements (2.5 ± 0.61 pmol/l). The levels of CT and vitamin D depended little on cow productivity and feeding.

6. Preparations of vitamin D (injected 3–5 times) administered during last days before calving act effectively on the levels of calcium, phosphorus, PTH and vitamin D. The levels of calcium, phosphorus and vitamin D in cows, which were injected vitamin D five times and thrice fifth day after parturition, did not differ statistically significantly from values found 5 days before calving.

7. The blood serum levels of PTH and vitamin D in cows with parturient paresis were statistically significantly higher compared with levels in the blood serum of healthy cows. A statistically significantly higher blood serum PTH level (18.31 ± 2.14 pmol/l; p < 0.05), and statistically significantly lower level of calcitonin (1.46 ± 0.02 pmol/l) were found in cows with parturient paresis fed without mineral supplements in comparison with cows fed with mineral supplements (12.93 ± 2.14 pmol/l and 1.74 ± 0.61 pmol/l respectively, p < 0.05). There was no correlative relation between calcium and PTH in the blood serum of cows with parturient paresis, although a strong negative correlation was found between calcium and vitamin D.

8. A statistically significantly lower blood serum levels of calcium, phosphorus and magnesium were found in cows with osteomalacia (compared with healthy cows), however the levels of PTH, CT and vitamin D did not differ statistically significantly. The level of PTH correlated with level of calcium satisfactorily negatively and with level of vitamin D strongly negatively.

9. The methods developed for humans (electrochemiluminescence analysis, chemiluminescence immunometric analysis, immunofermentmetric analysis) are suitable for determination of levels of PTH, CT and vitamin D in the blood serum of cattle.

SUGGESTIONS:
1. To use the method of electrochemical luminescence analysis for determination of the blood serum level of PTH in cattle, which is sensitive (analytical sensitivity of 0.127 pmol/l), cheap and fast (duration of analysis of 18 min.).

2. To administer preparations of vitamin D parenterally at least thrice during the period of 10 days before supposed calving for prevention of parturient paresis of dry cows-in-calf.

LIST OF PUBLICATIONS ON THE DISSERTATION TOPIC:

REZIUMÉ

IVADAS

РЕЗИУМÉ

Tvartinio laikotarpio pabaigoje 2–4 metų amžiaus karvėms kraujo serume tirti kalcio, fosforo, magnio, PTH, CT, vitaminino D kiekiai ir nustatyta, kad karvių kraujo serume vidutiniai fosforo (1,88±0,17 mmol/l) ir magnio (0,96±0,19 mmol/l) kiekiai buvo normos ribose. Kalcio kiekis rekomenduojamos normos ribose buvo nustatytas tik vienos karvės kraujo serume, kitų kraujo serume nustatyta nedidelė hipokalcemija, vidutinės kalcio kiekis buvo 2,28±0,28 mmol/l. PTH kito nuo 2,2 iki 5 pmol/l (3,46±0,75 pmol/l). Tai buvo mažiausias ir statistinės patikimos (p<0,05)

PTH kiekis iš visų klinikinių sėkmių karvių grupių, tirtų tvartiniu laikotarpui, išskyrus didelio produktyvumo karvės, šermas su mineralinėmis papildais (3,43±0,38 pmol/l, p>0,05) ir mažo produktyvumo karvės, šeriamas tiek elementų, taip pat makroelementų Ca, P bei Mg kiekiai.

TYRIMŲ DUOMENYS IR JŲ ĮTARIMAS

Mūsų vykdomų bandymų metu tyrimo, kaip kinta vitamininoD, PTH, CT, Ca, P, Mg kiekiai šervų ir sąveikų karvių kraujo serume. Tvirtiniu laikotarpui atsirės veršingų dalykų biocheminius kraujo serumo rodiklius, nustatyti atitinkantys fiziologinę normą arba jai artimi makroelementų kiekiai. Kalcio vidutiniskai buvo 2,62±0,37 mmol/l, fosforo – 1,51±0,22 mmol/l, magnio – 1,08±0,13 mmol/l, PTH kiekis svyravo nuo 3,5 iki 5,9 pmol/l (4,37±0,75 pmol/l) ir statistiškai patikimi skyriai nuo nustatytų 2–4 metų amžiaus karvių grupių kraujo serume (p<0,05), tačiau nuo nustatytų užtikrintų veršingų karvių kraujo serume statistiškai patikimai neskyry (p>0,05).

Vidutinis kalcitono kiekis buvo 1,75±0,38 pmol/l, tačiau statistiškai patikimi skyriai nuo nustatytų 2–4 metų amžiaus karvių grupių kraujo serume (p<0,05) ir nuo mažo produktyvumo sąlyginių sėkmių karvių grupių, šeriamas tiek su mineraliniais papildais, tiek be jų (p<0,05). Vidutinis vitaminino D kiekis buvo 26,76±6,67 mmol/l ir tai buvo mažiausias tvartiniu laikotarpui nustatytas vitaminino D kiekis (p<0,05) tarp visų tirtų klinikinių sėkmių karvių grupių. Ganykliniu laikotarpiu atsirės veršingų dalykų biocheminius kraujo serumo rodiklius, nustatyti atitinkantys fiziologinę normą kalcio kiekiai (2,85±0,21 mmol/l), padidėjį ir fiziologinę normą atitinkantys fosforo (2,01±0,10 mmol/l) ir magnio (1,21±0,12 mmol/l) kiekiai. Parathormono kiekis kito nuo 2,0 iki 4,1 pmol/l (2,74±0,70 pmol/l) ir patikimi statistiškai skyriai nuo nustatytų tvartinui laikotarpui (p<0,05). Vidutinis vitaminino D kiekis buvo 25,4±2,94 mmol/l ir buvo labai artimas nustatytam žiemos laikotarpui (26,76±6,67 mmol/l, p>0,05).
Karvių patikimai statistiškai nesiskyrė (3,58±0,67 pmol/l, p>0,05). Kalcitonino vidutinės kiekis buvo 1,5±0,09 pmol/l, tačiau patikimo skirtumo palyginus su tvartiniu laikotarpiu nebuvo (1,46±0,00 pmol/l, p>0,05). Vidutinis vitaminio D kiekis buvo 35,67±5,49 nmol/l ir palyginus su nustatytu žiemos laikotarpiu, patikimai statistiškai nesiskyrė (37,2±7,78 nmol/l, p>0,05), bet buvo patikimai statistiškai didesnis negu kitų klinikinių sienų įvairiu tūrį karvių (p<0,05).

Išryšus didelio ir mažo produktyvumo klinikinių sienų karvių, šeriamų su mineraliniais papildais ir be jų kraujo serumų, visoms tirtoms karviams nustatyta hipokalcežia. Didžiausia hipokalcežia nustatyta produktyvumo karviams, negavusios mineralinių papildų (1,79±0,16 mmol/l), mažiausia – mažo produktyvumo karviams, gavusios mineralinius papildus (2,21±0,28 mmol/l). Forso kiekis visų tūrų karvių kraujo serumo buvo normos ribose. Patikimas statistinės skirtumos buvo tarp didelio produktyvumo karvių, šeriamų su mineraliniais papildais (1,63±0,26 mmol/l) ir be mineralinių papildų (1,47±0,12 mmol/l), p<0,05. Tarp kitų grupių patikimai patikimo skirtumo nebuvo (p>0,05). Magno kiekis visų tūrų karvių kraujo serumo buvo normos ribose, tačiau daugiausia magnos nustatyta produktyvumo karvių kraujo serumė, kurios gavo mineralinius papildus, tačiau patikimo skirtumo su kitomis grupėmis nebuvo (p>0,05). PTH kiekis visų tūrų karvių kraujo serumos su ir tvartenio laikotarpiu, balandžio – gegužės, nustatytas gynėžiniu laikotarpiu, tačiau yra statistiškai didesnis negu žiemos laikotarpiu, telykio (1,54±1,14 pmol/l, p<0,05), bet patikimai statistiškai nesiskyrė (1,54±1,14 pmol/l, p>0,05).

8 metų ir vyresniųjų karvių papildų, gaunančių mineralinius papildus, tvartinio laikotarpio pabaigoje ištrynus kraujo serumo rodiklius, nustatyta hipokalcežia (vidutiniškas kalcio kiekis buvo 1,88±0,27 mmol/l). Vidutiniais forso (1,52±0,12 mmol/l) ir magnio (0,85±0,10 mmol/l) kiekiais buvo rekomenduojamos normos ribose. PTH kiekis kiekis buvo 3,4 iki 6,1 pmol/l (vidutiniski 4,37±0,82 pmol/l). Patikimai mažesni nei žiemos laikotarpio kalcio (3,46±0,75 pmol/l, p<0,05). Kalcitonino kiekis buvo didesnis už tvartinių kalcio (1,61±0,20 pmol/l, p<0,05) ir telyčių (1,75±0,38 pmol/l, p<0,05) kiekii. Karvių patikimai statistiškai nesiskyrė nuo nustatytų žiemos laikotarpio kalcio (1,88±0,27 pmol/l, p<0,05). Patikimai statistiškai nesiskyrė nuo nustatytų žiemos laikotarpio magnio (0,85±0,10 mmol/l, p<0,05). Patikimai statistiškai nesiskyrė nuo nustatytų žiemos laikotarpio fosforo (1,52±0,12 mmol/l, p<0,05). Patikimai statistiškai nesiskyrė nuo nustatytų žiemos laikotarpio parathormonų (1,79±0,16 mmol/l, p>0,05). Patikimai statistiškai nesiskyrė nuo nustatytų žiemos laikotarpio PTH kiekio (1,54±1,14 pmol/l, p<0,05). Patikimai statistiškai nesiskyrė nuo nustatytų žiemos laikotarpio magnio (0,85±0,10 mmol/l, p<0,05). Patikimai statistiškai nesiskyrė nuo nustatytų žiemos laikotarpio fosforo (1,52±0,12 mmol/l, p<0,05). Patikimai statistiškai nesiskyrė nuo nustatytų žiemos laikotarpio parathormonų (1,79±0,16 mmol/l, p<0,05). Patikimai statistiškai nesiskyrė nuo nustatytų žiemos laikotarpio PTH kiekio (1,54±1,14 pmol/l, p<0,05). Patikimai statistiškai nesiskyrė nuo nustatytų žiemos laikotarpio magnio (0,85±0,10 mmol/l, p<0,05).

Atarostų produktyvumo karviams, tvartinio laikotarpio laikotarpiu, balandžio – gegužės, nustatytas gynėžiniu laikotarpiu, telykio (1,54±1,14 pmol/l, p<0,05), bet patikimai statistiškai nesiskyrė (1,54±1,14 pmol/l, p>0,05).
sušvirkštimą. Kraujo serumo nustatėme makroelementų Ca, P, Mg, bei kalcitropių hormonų – PTH, CT ir vitamino D kiekius. Veršiavimosi dieną kalcio koncentracija sumažėjo visų 4 tirtų karvių grupių kraujo serume (p<0,05). Penktą dieną po veršiavimosi 1 ir 2 grupių kraujo serumo nustatytas kalcio kiekis patikimai statistiškai nesiskyrė nuo nustatytų 5 dieną prieš veršiavimą (p=0,05). 3 ir 4 grupės karvių kraujo serumo nustatytas kalcio kiekis 5 dieną po veršiavimosi patikimai statistiškai skyrėsi nuo nustatytų 5 dienā iki veršiavimosi (p=0,05). Fosforo koncentracija veršiavimosi dieną sumažėjo visų karvių grupių kraujo serume (p<0,05). Penktą dieną po veršiavimosi 1 ir 2 grupių kraujo serumo nustatytas fosforo kiekis patikimai statistiškai nesiskyrė nuo nustatytų 5 dieną prieš veršiavimą (p=0,05). 3 ir 4 grupės karvių kraujo serumo nustatytos fosforo kiekis 5 dieną po veršiavimosi patikimai statistiškai skyrėsi nuo nustatytų 5 dieną iki veršiavimosi (p=0,05). Veršiavimosi dieną nustatytas magnio koncentracijos padidėjimas visų karvių grupių kraujo serumu patikimai statistiškai skyrėsi nuo nustatytos magnio koncentracijos 5 dieną prieš veršiavimą (p<0,05). Po veršiavimosi tiriant magnio koncentraciją kraujyje, pastebėtas magnio koncentracijos mažėjimas. Penktą dieną po veršiavimosi nustatytos magnio kiekio visose karvių grupėse buvo patikimai statistiškai mažesnė už nustatytą 5 dieną prieš veršiavimą (p<0,05). Veršiavimosi dieną nustatytas PTH kiekis visų karvių grupių kraujo serumo buvo patikimai statistiškai didesnis už nustatytą 5 dieną prieš veršiavimą (p<0,05). Pirmą dieną po veršiavimosi PTH kiekis išliko aukštas, tačiau patikimo skirtumo veršiavimosi dieną ir dieną po veršiavimosi nei vienoje grupėje nebuvo (p>0,05). Penktą dieną po veršiavimosi nustatytas PTH kiekis 1, 2 ir 3 grupių kraujo serumo patikimai statistiškai nesiskyrė nuo nustatytų 5 dieną prieš veršiavimą (p=0,05), o 4 grupės kraujo serumo buvo patikimai statistiškai didesnis (p=0,05). Kalcitonino kiekis tirtų karvių kraujo serumo buvo mažas ir daugelio atveju aparatū nespėjo nustatyti, kai mineralinis papildas su pašaru didina makroelementų kiekį (p<0,05). Statistinė analizė rodo, kad mineralinis papildas su pašaru didina makroelementų kiekį tiek sveikoms, tiek sargančioms karvėms ir skatina PTH išskryrimą. Papildas teigiamai veikia homeostazę, nes su preparatu gautas kalcio nepakanka palaikyti reikiamo jo kiekio kraujo serumo po veršiavimosi. Vitamino D vidutiniškai buvo 45,84±10,76 nmol/l. Osteomaliacija sargančių karvių kraujo serumo būto statistiškai patikimai mažesnė (lyginant su sveikomis karvėmis) (p<0,05). Parathormono vidutiniškai buvo 3,95±0,60 pmol/l, tačiau palyginus su sveikomis ir matiu sargančiomis karvėmis, patikimo skirtumo nėra (p=0,05). Tačiau buvo patikimai mažiau negu po parame karvių grupių (p<0,05). Kalcitonino vidutiniškai buvo 1,55±0,19 pmol/l, tačiau patikimo skirtumo su sveikomis karvių grupėmis nėra (p>0,05). Vitamino D kiekis buvo 33,97±11,39 nmol/l, tačiau nesiskyrė skirtoje karvių grupėse, tačiau patikimai statistiškai nesiskyrė nuo veršinų sąlygų (p=0,05), kitų sąlygų bei karvių grupių kraujo serumo buvo patikimai statistiškai mažesnė (p<0,05). Kalcitonino kiekis vidutiniškai buvo 1,61±0,20 pmol/l ir statistiškai nesiskyrė nuo kitų kliniškai sveikų karvių grupių, išskyrus 8 metų ir vyresnių karvių grupę, kai buvo patikimai statistiškai mažesnis (1,46±0,00 pmol/l, p<0,05). Vitamino D kiekis buvo panašus į nustatytą kitų kliniškai sveikų karvių grupių kraujo serumo, mažesnis buvo tik veršinų sąlygų kraujoje, tačiau statistiškai patikimo skirtumo nėra (p>0,05). Analizuojant sargančių pareze po veršiavimosi kravių karvės serumo biocheminius rodiklius, pastebėti rūšiškai skirtingų hormonų ir makroelementų kiekis pokyčiai. Mūsų pareže po veršiavimosi su sargančiomis karvėmis ir normos serumo kraujo, šertų pašarais su mineraliniais papildais, kraujo serumo PTH buvo daug didesnis palyginti su sveiku ir vidutiniškai buvo 12,93±2,14 pmol/l (p<0,05). Vidutinio kalcio (1,54±0,61 mmol/l) ir fosforo (0,71±0,29 mmol/l) kiekiai buvo patikimai statistiškai mažesni nei ląšvardžio kiekiai (p<0,05). Gausūs mineralinių papildų pareže sargančių karvių kraujo serumo kalcio ir fosforo nustatėme didaigiai ir nesiskyrė su sargančių ir negausių mineralinio papildų. Gausūs papildų pareže po veršiavimosi sargančių karvių kraujo serumo kalcio buvo 10,4%, fosforo 8,5% daugiau nei negausiuosiuose, tačiau jų kiekis išliko mažas. PTH kiekis kito nuo 9,7 pmol/l iki 15,9 pmol/l (vidutiniškai 12,93±2,14 pmol/l). Vitamino D vidutiniškai buvo 43,09±8,16 nmol/l. Pareže po veršiavimosi sargančių skurkimu metu negausių mineralinių papildų karvio kraujo serumo nustatėme patikimai mažesnius kalcio ir fosforo kiekiai nei ląšvardžio kiekiai (p<0,05). Kraujo serumo PTH buvo daug didesnis palyginti su sveiku (p<0,05) ir vidutiniškai buvo 18,3±1,68 pmol/l. PTH kiekio kito nuo 11,2 pmol/l iki 29,2 pmol/l. Kalcitonino kiekis šios grupės karvėms buvo mažas ir daugelį atveju aparatū nespėjo nustatyti, nes analizatorius IMMULITE technineje charakteristikoje nurodyma, kad žemesnių verčių kaip 1,46 pmol/l jis nenustato. Tačiau iš gautų duomenų galime suprasti, kad kalcitonino darvojuose kraujo kiekiai buvo labai mažai. Tyrimo rezultatai rodo, kad mineralinis papildas su pašaru didina makroelementų kiekį tiek sveikoms, tiek sargančioms pareže karvėms ir skatina PTH išskryrimą. Papildas teigiamai veikia homeostazę, nes su preparatu gautas kalcio nepakanka palaikyti reikiamojo kiekio kraujo serumo po veršiavimosi. Vitaminu D vidutiniškai buvo 45,84±10,76 nmol/l.
Kraujo serume nustatytas patikimai statistiškai didesnis PTH kiekis (18,31±2,14 pmol/l; p<0,05) ir patikimai statistiška i mažesnis kalcitonino kiekis (1,46±0,02 pmol/l; p<0,05). Līdz ar to, kalcitonino kiekiai nepastebėti mažėti, o kalcitropinių hormonų, vitamino D ir makroelementų Ca, P, Mg kiekiai šaltiniai su mineraliniais papildais (atitinkamai, 12,93±2,14 pmol/l, 1,74±0,61 pmol/l, p<0,05). Pareze sergančių karvių kraujo serume nustatytos stiprus neigiamas koreliacijos ryšys. PTH kiekiai virsta nuo mažo 2,9 iki didesno 4,62 pmol/l ir vidutiniškai 3,97±0,50 pmol/l. Lyginant su sveikomis karvėmis, mastitu sergančių karvių kraujo serume kalcitonino kiekis (1,83±0,49 pmol/l) buvo labai artimas sveikų karvių kraujo serume nustatytam kalcitonino kiekiai (2,28±0,20 mmol/l), o fosforo koreliacės tarp kalcio ir PTH nėra, tačiau tarp kalcio ir vitamino D nustatyta stiprus neigiamas koreliacinis ryšys.

8. Osteomalacija sergančių karvių kraujo serume buvo patikimai statistiškai mažesni (lyginant su sveikomis karvėmis) kalcio, fosforo ir magnio kiekiais, tačiau PTH, CT ir vitamino D kiekiai patikimai statistiškai nesiskyrė. PTH vidutiniškai neigiamai koreliavo su kalcio ir stipriai neigiamai – su vitamino D kiekiais.

9. Žmonėms skirti metodai (elektrocheminės liuminescencinės, chemiliuminescencinės imunometrinės, imunofermentinės analizės) tinka nustatyti PTH, CT ir vitamino D kiekius galvijų kraujo serume.

PASIŪLYMAI:

1. PTH kiekiai galvijų kraujo serume nustatyti naudoti elektrochemines liuminescencines analizės metodą, kuris yra jautrus (analizinis jautrumas 0,127 m/s – 18 min.), užtikrinant, kad neatsitiktinai didėtų vestibuliūs kaip ir motorinės kelių žmonių, esant priešininkui.

2. Užtrūkstų kūno masės pokyčių, atvejų po apsiveršiavimo profilaktikos, likus 10 metams ir 15 metams nuo 1,46 iki 2,9 pmol/l, 18,1 iki 56,4 nmol/l. PTH kiekiai neigiamai koreliavo su kalcio kiekiais ir teigiamai – su vitamino D ir kalcitonino kiekiais, o vitamino D kiekiai neigiamai koreliavo su kalcio kiekiais.

3. PTH, CT ir vitamino D kiekiai sveikų karvių kraujo serume kito priklausomai nuo fiziologinės būklės – veršingų kūno masės pokyčių, teigiant, kad kaltojai, kurių kūno masė esątų mažesnė nei sąlyginių, turėtų mažesnius kalcitonino ir kalcio, ir didesnius PTH ir vitamino D kiekiai. PTH ir CT kiekiai patikimai statistiška mažesni PTH, CT ir vitamino D kiekiai sveikų karvių kraujo serume (2,5±0,61 pmol/l). CT ir vitamino D kiekiai mažai priklausė nuo karvių produktuvumo ir šerimo.

4. PTH, CT ir vitamino D kiekiai sveikų karvių kraujo serume kito priklausomai nuo metų laiko – žiemos laikotarpio nustatytų patikimų statistiškai mažesnis PTH, CT ir vitamino D kiekiai sveikų karvių kraujo serume. PTH, CT ir vitamino D kiekiai sveikų karvių kraujo serume kito priklausomai nuo metų laiko – žiemos laikotarpio nustatytų patikimų statistiškai mažesnis PTH, CT ir vitamino D kiekiai sveikų karvių kraujo serume.

5. Didžiausiai PTH kiekiai nustatytai produktuvių be mineralinių papildų šeriamų kaltininkų įvairių mažesni PTH, CT ir vitamino D kiekiai sveikų karvių kraujo serume.

6. Vitamino D preparatai (švirkščių užtrūkstų kūnų masės pokyčių, atvejų po apsiveršiavimo profilaktikos, likus 10 metams) užtikrinti, kad neatsitiktinai didėtų vestibuliūs kaip ir motorinės kelių žmonių, esant priešininkui.

TRUMPOS ŽINIOS APIE AUTORIŲ

Gimė 1972 m. gruodžio m. 1 d. 1991 m. baigė LVA Veterinarijos instituto medzininkystės studijas. M. 1997 metais baigė LVA Veterinarijos instituto doktorantūros studijas gyvulių sveikatingumo ir epidemiologijos švietimu.

Gimė 1972 m. gruodžio m. 1 d. 1991 m. baigė LVA Veterinarijos instituto medzininkystės studijas. M. 1997 metais baigė LVA Veterinarijos instituto doktorantūros studijas gyvulių sveikatingumo ir epidemiologijos švietimu.